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HIGH ORDERWENOSCHEMESFORHAMILTON-JACOBIEQUATIONSON
TRIANGULAR MESHES*

YONG-TAOZHANG1ANDCHI-WANGSHU$

Abstract. In thispaperweconstructhighorderweightedessentiallynon-oscillatory(WENO)schemes
for solvingthenonlinearHamilton-Jacobiequationsontwo-dimensionalunstructuredmeshes.Themain
ideasarenodalbasedapproximations,theusageofmonotoneHamiltoniansasbuildingblocksonunstruc-
turedmeshes,nonlinearweightsusingsmoothindicatorsofsecondandhigherderivatives,andastrategyto
choosediversifiedsmallerstencilsto makeupthebiggerstencilin theWENOprocedure.Boththird-order
andfourth-orderWENOschemesusingcombinationsofsecond-orderapproximationswithnonlinearweights
areconstructed.Extensivenumericalexperimentsareperformedto demonstratethestabilityandaccuracy
of themethods.High-orderaccuracyin smoothregions,goodresolutionof derivativesingularities,and
convergencetoviscositysolutionsareobserved.

Key words,weightedessentiallynon-oscillatoryschemes,Hamilton-Jacobiequations,high-orderaccu-
racy,unstructuredmesh

Subjectclassification.AppliedandNumericalMathematics

1. Introduction. In thispaper,weconsiderthenumericalsolutionofHamilton-Jacobi(H-J)equations

(_ Jr- H((_Xl ,''' , _Xd) = 0, (_)(_', 0) = (_0(;_'). (1.1)

Such equations appear often in applications, such as in optimal control, differential games, image processing

and computer vision, and geometric optics. With the popularity of level set methods [12] the necessity to

have good algorithms to solve H-J equations becomes even more obvious.

There have been many papers in the literature developing numerical methods to solve H-J equations.

In certain sense H-J equations are easier to solve than their conservation laws counterparts, because the

solutions here are smoother: typical solutions are continuous with possibly discontinuous derivatives.

For structured meshes, finite difference methods similar to those developed for conservation laws could

be easily designed. Thus we have the earlier second order ENO schemes of Osher and Sethian [12], higher

order essentially non-oscillatory (ENO) schemes of Osher and Shu [13], higher order weighted ENO (WENO)

schemes of Jiang and Peng [7], and central high resolution schemes of Lin and Tadmor [10], among many

others.

However, for unstructured meshes there are conceptional difficulties in designing schemes such as finite

volume schemes and finite element schemes, which are very useful for conservation laws. The problem arises

because the H-J equations cannot be written in a "conservation form", suitable for integration by parts

which is the backbone of finite volume and finite element methods. Thus algorithms, especially high order

algorithms for H-J equations on unstructured meshes are relatively few. We have the very good first and

second order finite volume type schemes of Abgrall [1] and ENO or limiter type high order version of Augoula
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and Abgrall [2]. The monotone Hamiltonians developed in [1] are used in this paper as building blocks. We

also have the continuous finite element methods of Barth and Sethian [4], and the discontinuous Galerkin

methods of Hu and Shu [5]. However, the formulation of the finite element methods in [5] actually uses the

differentiated version of H-J, which is a system of conservation laws. It would be desirable in many situations

to use directly H-J on an unstructured mesh and still obtain high order, non-oscillatory numerical results.

The algorithms developed in this paper fulfill this purpose.

The WENO methodology adopted in this paper can be traced back to the earlier work for conservation

laws started in [11] for a third order finite volume version in one space dimension and in [8] for third and

fifth order finite difference WENO schemes in multi space dimensions with a general framework for the

design of the smoothness indicators and nonlinear weights. The techniques most relevant to the current

paper are the third and fourth order finite volume WENO schemes for 2D conservation laws in general

triangulations [6] and the finite difference WENO schemes for Hamilton-Jacobi equations [7]. However,

significant new components of the algorithms have been developed in this paper to deal with the additional

difficulty caused by the "non-conservation" form of the H-J equations and unstructured meshes. These

include nodal based approximations, the usage of monotone I-Iamiltonians as building blocks on unstructured

meshes, nonlinear weights using smooth indicators of second and higher derivatives, and a strategy to choose

diversified smaller stencils to make up the bigger stencil in the WENO procedure. Both third-order and

fourth-order WENO schemes using combinations of second-order approximations with nonlinear weights

are constructed. Extensive numerical experiments are perforlned to demonstrate the stability and accuracy

of the methods. High-order accuracy in smooth regions, good resolution of derivative singularities, and

convergence to viscosity solutions are observed.

The algorithm is developed in section 2. Section 3 contains numerical examples verifying the stability,

convergence and accuracy of the algorithms. Concluding remarks are given in section 4.

2. The WENO algorithm for 2D unstructured meshes. In this section we develop third and

fourth order WENO schemes on unstructured meshes in 2D for the HH-J equations.

2.1. The framework. We take d = 2 in (1.1), and use z,y instead of zl,z2:

¢_+ H(,., ¢_) = 0, ¢(,,> 0) = ¢o(*, v). (2.1)

The equation (2.1) is solved in the domain f_, which has a triangulation Th consisting of triangles. The nodes

will be named by their indices 0 < i < N, with a total of N + 1 nodes. For every node i, we define the ki + 1

angular sectors To,-.. , Tkl meeting at the point i; they are the inner angles at node i of the triangles having

i as a vertex. The indexing of the angular sectors is ordered counterclockwise, if,+½ is the unit vector of the

half-line Dl+ ½ = T1N T1+1, and 0, is the inner angle of sector T1, 0 < l < ki; see Figure 2.1.

We will denote by ¢_ the numerical approximation to the viscosity solution of (2.1) at node i. (V¢)0, • • , (Vo)kl

will respectively represent the numerical approximation of V¢ at node i in each angular sector To, •. - , Tk_.

An important building block for the algorithms in this paper is the Lax-Friedrichs type monotone

Hamiltonian for arbitrary triangulations developed by Abgrall in [1], which is a generalization of the Lax-

Friedrichs monotone Hamiltonian for Cartesian meshes in Osher and Shu [13]. This monotone Hamiltonian

is given by

OZ_I+½ _(_7_)1 q- (_)l+1)/ "_ _ (2.2)
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FIG. 2.1. node i and its angular sectors.

where

= -- , a=max{ max IHx(_,v)l, max IH2(u,v)l}.
-- A<_<B A<u<B

C<v<D (7< t'<D

Here Hs and H2 are the partial derivatives of H with respect to _b, and qSv, respectively, or the Lipschitz

constants of H with respect to _, and _bv, if H is not differentiable. [A,B] is the value range for (_b,)z,

and [C, D] is the value range for (_v)*, over 0 < l < ki for the local Lax-Friedrichs Hamiltonian, and over

0 < 1 < ki and 0 < i < N for global Lax-Friedrichs Hamiltonian.

The /2/ in (2.2) defines a monotone Hamiltonian. It is Lipschitz continuous in all arguments and is

consistent with H, i.e., /2/(V05,.-. , V_b) = H(V_). Hence if we have high-order approximations to V_ at

node i in every angular sector, the numerical Hamikonian /2/ will be a high-order approximation to/-/.

The semi-discrete scheme is thus given by:

dtoi(t) + , (V_)k_) = 0 (2.3)_q((v_)0,.-.

and it is discretized in time by the high order nonlinearly stable Runge-Kutta time discretization in [16].

If the spatial dimension reduces to one, the numerical Hamiltonian (2.2) will reduce to the local or global

Lax-Friedrichs Hamiltonian [13]:

i2i(,u_ u + ) = H ( _U- + _u+ ) 1 +, 2 - _(_. - _.-) (2.4)

with a = max [H'(u)[. If the maximum for computing a is taken over the range covered by _u- and
A<:u<B

u +, we get the local Lax-Friedrichs Hamiltonian; if it is also taken over all grid points, we get the global

Lax-Friedrichs Hamiltonian.

2.2. Linear schemes. Now we discuss how to construct a high-order approximation for V_ in every

angular sector of every node. Let pk denote the set of two-dimensional polynomials of degree less than or

equal to k. We use Lagrange interpolations as follows: given a smooth function _b, and a triangulation with



triangles{A0,/_1,-.• , /_M} and nodes {0, 1, 2,..., N}, we would like to construct, for each triangle Ai, a

polynomial p(x, y) C pk such that p(xl, Yl) = ¢(xl, Yl), where (xl, Yl) are the coordinates of the three nodes

of the triangle Ai and a few neighboring nodes, p(x, y) would thus be a (k + 1)th-order approximation to ¢

on the cell Ai.

(k+l!2(k+2)Because kth degree polynomial p(x,y) has K - ._ degrees of freedom, we need to use the

information of at least K nodes. In addition to the three nodes of the triangle Ai, we may take the other K-3

nodes of the neighboring cells around triangle A i. We rename these K nodes as Si = {M1, M2,... , MK},

S_ is called a big stencil for the triangle Ai. Let (zi, Yi) be the barycenter of Ai. Define _ = (x - z_)/h_,

_! = (y - yi)/hi, where hi =

as:

Using the K interpolation conditions:

with I/_il denoting the area of the triangle A_, then we can write p(x, y)

k

j 0 s+r j

p(_s_) = ¢(M_), l = 1,2,..., K,

we get a K x K linear system for the K unknowns a_,.. The normalized variables _, r! are used to make the

condition number of the linear system independent of the mesh size.

It is well known that in two and higher dimensions this interpolation problem is not always well defined.

The linear system can be very ill-conditioned or even singular, in such cases we would have to add more

nodes to the big stencil Si from the neighboring cells around triangle A i to obtain an over-determined linear

system, and then use the least-square method to solve it.

After we have obtained the approximation polynomial p(x, y) on the triangle Ai, Vp will be a kth-order

approximation for V¢ on /_. Hence we get the high-order approximation Vp(xt, yt) to V¢(xt, y_), for any

one of the three vertices (xl, Yl) of the triangle Ai, in the relevant angular sectors.

2.2.1. Third-order linear schemes. A scheme is called linear if it is linear when applied to a linear

equation with constant coefficients. We need a third-order approximation for V¢ to construct a third-order

linear scheme, hence we need a cubic polynomial interpolation. A cubic polynomial p3 has 10 degrees of

freedom. We will use some or all of the nodes shown in Figure 2.2 to form our big stencil. For our target

triangle A0, which has three vertices i, j, k and the barycenter G, we need to construct a cubic polynomial

p3, then Vp 3 will be a third-order approximation for V¢ on A0, and the values of Vp 3 at points i, j and

k will be third-order approximations for V¢ at the angular sector A0 of nodes i, j and k. We name the

nodes of the neighboring triangles of triangle A0 as follows: nodes 1, 4, 7 are the nodes (other than i, j, k) of

neighbors of A0, nodes 9, 2, 3, 5, 6, 8 (other than 1, 4, 7, i, j, k) are the nodes of the neighbors of the three

neighboring triangles of A0. Notice that the points 9, 2, 3, 5, 6, 8 do not have to be six distinct points. For

example the points 5 and 6 could be the same point.

Our interpolation points are nodes i, j, k, 1, 4, 7 and some of the nodes taken from the set E =

{9, 2, 3, 5, 6, 8}. The algorithm to determine the big stencil So for triangle A 0 is as follows.

Procedure 2.1: The choice of the big stencil for the third-order scheme.

1. Nodes i, j, k, 1, 4, 7 are always included in So.

2. Compute the distance of point G and every node in the set E = {9, 2, 3, 5, 6, 8} respectively. Sort

the nodes in E with this distance from smallest to biggest, and denote the sorted node set by E.



3
2

1 4

9

7

FIG. 2.2. The nodes used ]'or the big stencil of the third-order scheme.

3. From the sorted node set /_, add the first 4 nodes to So. Use the 10 nodes in So as interpolation

points to get the 10 x 10 interpolation coefficient matrix A,

70 _g 7g _o7o _g 7_ _gTo

71 _2 T]2 _1T]1 _3 ?_]3 _2 ?_]1

72 _ 7_ _272 _ 7_ 2_272

79 _ 7_ _979 _ 7_ 2_9 79

1 _o

1 _1

A= 1 _2

1 _9

where {l = (xl - xG)/ha, 71 = (Yl - ya)/ha, ha = Iv/]_, and (xl,

nodes in S0, (xa, Ya) is the coordinate of the point G.

_07_

_27_

_97_

Yl) are the coordinates of the

4. Compute the reciprocal condition number c of A. This is provided by most linear solvers. If c _> d

for some threshold (_, we have obtained the final stencil S0. Otherwise, add the fifth node in /) to

So. Use the 11 nodes in S0 as interpolation points to get the 11 x 10 least square interpolation

coefficient matrix A. Judge the reciprocal condition number c again. Continue in doing this until

c _> 5 is satisfied. In our computation, we have taken 5 = 10 -3 as a good threshold after extensive

numerical experiments. Notice that, since we have normalized the coordinates, this threshold does

not change when the mesh is scaled uniformly in all directions. For all the triangulations we have

tested, at most 12 nodes are needed in So to reach the condition c _>(_. •

Remark 2.1. The reason that we always include the nodes i, j, k, 1, 4, 7 in S0 is to make the target cell

A0 sufficiently "central" in the stencil, thus avoiding S0 to be seriously downwind biased which could lead

to linear instability. Linear instability is indeed observed in our numerical experiments when 1, 4, 7 are not

forced to be in S0. •

We now have obtained the big stencil So and its associated cubic polynomial p3. For each node (xl, Yl)

in A0, Vp a(x_, yt) is a third-order approximation to VO(xz, y,). In order to construct a high-order WENO

scheme, an important step is to obtain a high-order approximation using a linear combination of lower order



approximations.Wewillusealinearcombinationofsecond-orderapproximationstogetthesamethird-order
approximationto V6(xl,yl) asVp3(xl,Yl), i.e., we require

0 3 q O 0 3 q O

_XP (Xl'yl) : 8Z_/8'X_XPS(Xl'B1)'I @P (xl'yl) : Z_s'Y81 _-pS(xl'yl) (2.5)

where P8 are quadratic interpolation polynomials, and %,x and %,y are the linear weights for the x-directional

derivative and the y-directional derivative respectively, for s = 1,.-. , q. The linear weights are constants

depending only on the local geometry of the mesh. The equalities in (2.5) should hold for any choices of the

function ¢.

Notice that to get a second-order approximation for the derivatives VO(xl,yl), we need a quadratic

interpolation polynomial. According to the argument in [6], the cubic polynomial p3(x,y) has four more

degrees of freedom than each quadratic polynomial ps(x, y), namely x 3, x2y,xy 2, y3. For the six degrees of

freedom 1, x, y, x 2, xy, y2, if we take ¢ = 1, ¢ = x, ¢ = y, ¢ = x 2, ¢ = xy and O = y2, the equalities in (2.5)

will hold for all these cases under only one constraint each on %,x and %,y, namely q_8 1%,x = land

Y_q8 1%,y = 1, because p3 and P8 all reproduce these functions exactly. Hence we should only need q _> 5.

We take q = 5 in our scheme.

We now need q = 5 small stencils , 8, s = 1,-.. , 5 for the target triangle A0, satisfying S0 = U_ 1,8,

and every quadratic polynomial P8 is associated with a small stencil, 8. In our third-order scheme, the small

stencils will be the same for both directions x, y and all three nodes i, j, k in A 0. However the linear weights

78,x,%,y can be different for different nodes i, j, k and different directions x,y. Because each quadratic

polynomial has six degrees of freedom, the number of nodes in , 8 must be at least six. To build a small

stencil, 8, we start from several candidates, !_'), r = 1, 2,-.. , ns. These candidates are constructed by first

taking a point A! ") as the "center", then finding at least six nodes from So which have the shortest distances

from A! _') and can generate the interpolation coefficient matrix with a good condition number, using the

method of Procedure 2.1. We then choose the best, 8 among, !r),r = 1,-.. ,n8 for every s = 1,-.. ,5. Here

"best" means that by using this group of small stencils, the linear weights %,x, %,y, s = 1, • • - , 5 for all three

nodes i,j, k are either all positive or have the smallest possible negative values in magnitude. The details of

the algorithm is described in the following procedure.

Procedure 2.2: The third-order linear scheme.

For every triangle A,, l = 1,..- , N, do steps 1 _ 5:

1. Follow Procedure 2.1 to obtain the big stencil S1 for A1.

2. For s = 1,.-. , 5, find the set l_ = {, 8(r),r = 1, 2,.-. ,ns}, which are the candidate small stencils

for the s-th small stencil. We use the following method to find the , !r) in Ws: first, nodes i,j,k

are always included in every , !"); then we take a point A! ") as the center of, !r), detailed below,

and using the idea of Procedure 2.1, we find at least 3 additional nodes other than i,j, k fi'om St

which satisfy the following two conditions: 1.) they have the shortest distances from A!r); and

2.) taking them and the nodes i,j, k as the interpolation points, we will obtain the interpolation

coefficient matrix A with a good condition number, namely the reciprocal condition number c of

A satisfies c _> d with the same threshold _ = 10-3. For the triangulations we have tested, at

most 8 nodes are used to reach this threshold value. Finally, the center of the candidate stencils

A (r)8 , r = 1,-.. , ns; s = 1,.-- , 5 are taken from the nodes around A1 (see Figure 2.2) as follows:

• A? ) = point G, nl = 1;

• A? =node1,A; =node2,A; =node9, =3;



• A_ 1) : node 4, A_ 2) : node 3, A_ a) : node 5, rta : 3;

• d_ 1) : node 7, A_ 2) : node 6, A_ a) : node 8, rt4 : 3;

sa(,')_9 = nodes 2,9,3,5,6,8 and the middle points of nodes 2 and 3, 5 and 6, 9 and 8.• [1"5 Jr 1

rta = 9.

3. By taking one small stencil , !,-5) from each Hq, s = 1,..- , 5 to form a group, we obtain ns x ne x

.-. x rza groups of small stencils. W_ eliminate the groups which contain the same small stencils,

and also eliminate the groups which do not satisfy the condition

5

U,>/=s,
s 1

According to every group {, !"*), s = 1.-.., , 5} of small stencils, we have 5 quadratic polynomials

{p!"_)}_ ,. We evaluate _Txp('_) and o7Y* at points i,j, k, to obtain second-order approximation

values for V_b at the three vertices of the triangle A,. W% remark that for practical implementation,

we do not use the polynomial itself, but compute a series of constants {al}_z 1 which depend on the

local geometry only, such that:

o m= (2.6)
1 1

where every constant al corresponds to one node in the stencil , !"*) and m is the total number of

nodes in , !"_). For every vertex (x_,y,_) of triangle A h we obtain a series of such constants. And

for the y directional partial derivative, we compute the corresponding constants too.

4. For every group {, ,('_),_=_ 1, ..., 5}, we form linear systems and solve them to get a series of linear

^/,-_) ^ (,-_)weights /,,_ and satisfying the equalities (2.5), for the three vertices i, j, k. Using the previousVs,y

argument for combining low-order approximations to get a high-order approximation, we form the

linear system for - ('_)7_# at a vertex (_,_,_h_) as follows (note that we use normalized variables): take

= _3 _2_/' _/2 _/3 respectively, the equalities are:

£ _("_)_0 r'("_)_f:,_ % _
s 1

where p!_'_) is the quadratic interpolation polynomial for gS,using stencil , !"_). Again, in practical

implementation, we will not use p!"_) itself, instead we use the constants computed in the last

step and equation (2.6) to compute the approximation for the derivatives of _b. Together with the

requirement

5

= 1., (2.s)
s 1

we obtain a 5 x 5 linear system for - ('_) - ('_)7,# • For the same argument can be applied. Note that7s,y

we need to compute the reciprocal condition number c for every linear system again. If c _> 5 for the

same threshold 6 = 10-3,, we will accept this group of stencils as one of the remaining candidates.

Otherwise, the linear system is considered to be ill-conditioned and its corresponding group of small

stencils {, !"_), s = 1,... , 5} is eliminated from further consideration.

5. For each of the remaining group Al = {, ,(_'_),s = 1,-.. , 5), find the minimum value 7t of all these

linear weights 7_,_ ,7_,y of the three vertices i, j, k. Then find the group of small stencils whose 7t
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FIG. 2.3. The nodes used ]'or the big stencil of the J'ourth-order scheme.

is the biggest among all L{T1}l 1, and take this group as our final 5 small stencils for triangle A1.

Denote them by, s,s = 1,--. ,5. For every final small stencil , s,s = 1,2,.-. ,5, we store the index

numbers of the nodes in, _, the constants in the linear combinations of node values to approximate

values of V_> at points i,j, k, and the linear weights %,x, %,_ of the three points i,j, k.

6. Now we have set up the necessary constants which only depend on the mesh for all triangles. To form

the final linear scheme, we compute the third-order approximations (V¢5)0,..-, (V<_)_ for all mesh

nodes 1, by the linear combinations of second-order approximations, using the prestored constants

and linear weights. Then we can form the scheme (2.3). •

Remark 2.2. The strategy described above of finding second order smaller stencils to make up the third

order big stencil has been reached after our extensive numerical experiments. They are found to be robust to

different triangulations and equations. Of course we are not claiming that this procedure will not fail. V_ can

only claim that it behaves nicely in all our numerical tests. The computational cost of this procedure is quite

high, as many choices and comparisons are needed. Fortunately, at least for problems without adaptive mesh

refinements, this procedure is done only once at the beginning, and does not need to be repeated during time

marching. Because of the prestored constant coefficients for computing the the approximation to derivatives,

the time evolution part of the scheme is very efficient. •

2.2.2. Fourth-order linear schemes. To construct a fourth-order linear scheme, we need a fourth-

order approximation to V¢. Hence a fourth degree interpolation polynomial p4 (x, y) is required, which has

15 degrees of freedom. We will use part or all of the nodes shown in Figure 2.3 to construct the big stencil

of the fourth-order scheme.

Comparing Figure 2.3 with Figure 2.2, we can see that, in order to get the set of candidate nodes for

the big stencil of the fourth-order scheme, we have added nodes 10, 11, 12, 13, 14, 15 (Figure 2.3) to the set

for the third order scheme (Figure 2.2). Notice again that some of the added nodes may not be distinct.

The procedure to determine the big stencil of the fourth-order scheme is slightly different from that for

the third-order scheme. This difference is mainly due to implementation efficiency considerations and the



morestringentstabilityrequirementforthehigherorderscheme.Wewillnotusethedistancesbetweenthe
barycenterpointandthenodesto sortourcandidatenodesasinProcedure2.1.Instead,wegiveanordering
to thecandidatenodes.Thisorderingis givensothat,whenthenodesarechosensequentiallyfromit to
formthebigstencilS0, the target triangle A0 remains central to avoid serious downwind bias which could

lead to linear instability. Referring to Figure 2.3, our interpolation points for the polynomial p4 include

nodes i,j, k and the nodes taken from the sorted set: W = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. The

detailed procedure to determine the big stencil S0 for the target triangle A0 is given below.

Procedure 2.3: The big stencil of the fourth-order scheme.

1. Find 15 different nodes (other than the nodes i,j,k) around triangle A0, and give the order for

them as in Figure 2.3. Naming them using their ordering number, we get the sorted node set:

W = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

2. To start with, we take S0 = {i,j, k, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Use this stencil So to form the

15 x 15 interpolation coefficient matrix A as in Procedure 2.1.

3. Compute the reciprocal condition number c of A. If c _>(_ for the same threshold (_= 10-3, we have

obtained the final big stencil S0. Otherwise, we add the next node (i.e. node 13) in W to S0. Then

we obtain the 16 × 15 interpolation coefficient matrix A associated with this S0, an over-determined

system which can be solved by the least square procedure. Compute the reciprocal condition number

of A and check whether c _> 5 again. Repeat this if necessary until c _>5 is satisfied. In our numerical

tests, at most 16 nodes are needed in S0 to reach our threshold value in all the cases. •

We emphasize again that the ordering for the nodes as in Figure 2.3 is important to guarantee the chosen

stencil to yield to linear stability of the scheme.

Using the big stencil, we obtain the fourth-order approximation Vp 4 for V¢. The key step in building

our fourth-order WENO scheme is to get a fourth-order approximation for V¢ based on lower order approx-

imations. We still would like to construct several second-order approximations whose weighted average will

give the same result as Vp 4 at each angular sector of every node, i.e.,

p4(x,,y ) = ' = 0 w) (29)
s 1 s 1

where P_,x, P_,y are the quadratic interpolation polynomials, and %,_, %,y are the linear weights.

Remark 2.3. The reason that we still use second-order approximations, not third-order ones, as the lower

order approximations is that each second-order approximation needs fewer nodes in the big stencil, thus it is

easier to make the small stencils to be sufficiently diversified, which is important for the WENO technique to

function well near discontinuous derivatives in the solutions. We have encountered difficulties in obtaining

non-oscillatory results converging to the correct viscosity solutions for some of the more demanding test

cases when third order building blocks are used instead of the second order ones. •

We now determine the value of q, which is the number of small stencils, in the equalities (2.9). Because p4

has nine more degrees of freedom than the quadratic polynomials p_,_, p_,y, i.e., x a, x2y, xy 2, y3, x 4, x3y, x2y2,

xy 3, 94, according to our previous argument, we would need q _> 10. W_ take q = 10 in our fourth-order

scheme. The procedure to find all the small stencils is described below.

Procedure 2.4: The fourth-order linear scheme.

For every triangle Al, l = 1,..- , N, do steps 1 _ 3:

1. Follow Procedure 2.3 to obtain the big stencil St for At.



2. Foreachofthesixapproximations(Ox,Ovatverticesi, j, k of A1), find 10 small stencils respectively.

Let {, s,x, s = 1,..- , 10} denote the small stencils to approximate 0x at vertex i. To find them, we

first determine 10 preliminary small stencils {, 0o s, s = 1,-.. , 10} as follows (see Figure 2.3):

(1) Include nodes {i,j,k, 1,4,7} in , o.

(2) Include nodes {i, j, k, 1, 2, 9} in , 0.

(3) Include nodes {i, j, k, 4, 3, 5} in , 0.

(4) Include nodes {i, j, k, 7, 8, 6} in , 0.

(5) Include nodes {i,j, k} in all 0,s,s=5,6,...,10.

3,

(6) Take points As, 8 = 1,..- , 10 as the center of {, 0/10 where A1 = point G, A2 = node 1, ,43sis 1, z

node 4, A4 = node 7, A5 = node 10, A_ = node 13, A7 = node 11, A8 = node 14, A9 = node

12, and A10 = node 15.

(7) Obtain 6 nodes for each of {, 0_10sjsx. There are already 6 points in {, 0s}s4x. For {, 0_0sjs_, we

add 3 nodes (other than i, j, k) from Sl to each of them, which have the shortest distances from

As. Then use , 0 to get the interpolation coefficient matrix, and judge the reciprocal condition

number c of the matrix. If c reaches our threshold value d = 10-3, then 0 is found. Otherwise' s

add one different node fl'om St to 0 which has the shortest distance from As. Continue this

until c > _ is satisfied.

(8) All of the 6 approximations (to 0x, Oy at vertices i, j, k of A_) have the common 10 preliminary

small stencils {, 0s,8=l,..-,10}.

Now we come to determine the { ...... s = 1,-. • , 10}. Our goal is that the coefficient matrix _4 of

the 10 x 10 linear system, which is obtained from {, 10s._}s 1 and used to compute the linear weights,

has a good condition number. For s = 1, 2, • - • , 10, we perform the following steps:

(1) Taking the original small stencil, 0 as the interpolation stencil, compute the constants {a_}F_,

which depend on the mesh only and are the coefficients in the linear combination of function

values at the nodes in, 0 to get the second-order approximation to 0_ at vertex i.s

(2) Form the s-th column of the matrix A. Let _-t be the elements of the matrix A. Take the

9 functions _a(,') _0 _.(,')tw J_- 2 = _a,_2_l,_12,_la,_4,_arl,_2rl2,_rla,Zl 4 respectively, and let ps,_ be the

second-order interpolation polynomial for _0"), r = 2,-.. , 10, then aTis = 1, and

cQr/_') (,ci r_i_ (2.10)
a,-s = 0_ ....... ' _' r' = 2,..- ,10

where (_, r/_) is the coordinate of vertex i (again note that we use normalized variables). We use

the constants computed at last step to implement this, and will not need to use the polynomials

themselves.

(3) Now _4 has s columns and is a 10 x s matrix. Compute its reciprocal condition number c. If

c _>6, take the current small stencil as our s-th small stencil, s,_- Otherwise, change one node

which is in the current small stencil and farthest from the center point As, to another node

from S_ which is not in the current small stencil but is nearest to As. Now we get a new small

stencil. This part can be repeated if c _> _ is still not satisfied. Then the current small stencil

is our s-th small stencil.

For the small stencils to approximate the y-directional derivative at vertex i and x,y-directional

derivatives at other 2 vertices j,/_', we use a similar procedure.

Now we have obtained the coefficient matrix X with a good condition number. Along with the right
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handvectorb, whose components are bs = 1 and

b_, = _¢(")({i, r]i), r = 2,--. , 10, (2.11)

we obtain the 10 x 10 linear system

A5 = b. (2.12)

We solve it to ge_ the linear weights _ = (Ts,,," ", 7s0#) T- We use similar method to get {%,v}_,°s.

Then for each of small stencils, we store the index numbers of the nodes in it, the constants in

the linear combinations of node values to approximate values of the derivatives of 0, and the linear

weights.

4. Now we have set up necessary constants which only depend on the mesh for all triangles. To form the

final linear scheme, we compute the fourth-order approximation (V¢)0,"- , (V¢)k, for all the mesh

nodes 1, by the linear combinations of second-order approximations, using the prestored constants

and linear weights. We then form the scheme (2.3). •

Remark 2.4. We notice that in the fourth-order scheme, although the big stencil is the same to approximate

0¢ and _¢ at all three vertices i,j, k of the target cell A0, the small stencils can be different for the x-
0y,

direction and y-direction derivatives at one vertex, and also different at the three vertices i,j, k in the same

cell A0. This strategy is different from that for the third-order scheme described before. The reason for this

difference is that we need more small stencils than in the third-order case and it is difficult to find a group

of common small stencils for all the six cases (three vertices, 2 derivatives each). •

Remark 2.5. Again, the procedure described above of finding second order smaller stencils to make up

the fourth order big stencil has been reached after extensive numerical experiments. They are found to be

robust to different triangulations and equations. Of course we are not claiming that this procedure will

not fail. We can only claim that it behaves nicely in all our numerical tests. The computational cost of

this procedure is again quite high, as many choices and comparisons are needed. Fortunately, at least for

problems without adaptive mesh refinements, this procedure is done only once at the beginning, and does

not need to be repeated during time marching. Because of the prestored constant coefficients for computing

the the approximation to derivatives, the time evolution part of the scheme is again very efficient. •

2.8. WENO schemes. In this section, we construct the WENO schemes based on non-linear weights.

The resulting schemes will be suitable to compute the H-J equations whose solutions are not smooth.

2.8.1. WENO approximation. We only discuss the case of WENO approximation for the x-directional

derivative at vertex i of the target cell A,. Other cases are similar. In order to compute the non-linear weights,

we need to compute _he smoothness indicators first.

For a polynomial p(x, y) defined on the target cell A 0 with degree up to k, we take the smoothness

indicator 3 as:

9 = Z L IA°ll<-s (D_p(x'Y))"dxdY (2.13)
2<1_15a o

where c_ is a multi-index and D is the derivative operator. The smoothness indicator measures how smooth

the function p is on the triangle A0: the smaller the smoothness indicator, the smoother the function p is on

A 0. The scaling factor in front of the derivatives renders the smoothness indicator self-similar and invariant

under uniform sealing of the mesh in all directions.

11



Remark 2.6. The definition of the smoothness indicator in equation (2.13) is different from that used in

the WENO schemes for conservation laws [8]. In equation (2.13), the range of summation is 2 _< I_1 _< k,

but in [8] for conservation laws, it is 1 _< levi_< k. An intuitive reason is that H-J equations are in some sense

the conservation laws "integrated once", hence smooth indicators for the former should involve derivatives

one order higher than those for the latter. A similar strategy is also used in ENO schemes for H-J equations

in [13]. W> have found through numerical experiments, that if we still take 1 _< Ic_l _< k to compute the

smoothness indicators, we cannot obtain the correct viscosity solutions for some non-convex Hamilton-Jacobi

equations. •

Now we define the non-linear weights as:

_j 7j (2.14)
- E,,, - (c + 2

where Zj is the jth linear weight (e.g. the %,x in our linear schemes), >qj is the smoothness indicator for

the jth interpolation polynomial pj (x, y) (e.g. the p, in equation (2.5) for the third-order case and the p,,,

in equation (2.9) for the fourth-order case) associated with the jth small stencil, and g is a small positive

number to avoid the denominator becoming 0. W_ take g = 10 -6 for all the computations in this paper.

The final WENO approximation for the x-directional derivative at vertex i of target cell/X, is given by

q 0
(¢x)i = _ wj _TPj (xi, Yi) (2.15)

j 1

where (xi, Yi) are the coordinates of vertex i, q = 5 for the third-order schemes and q = 10 for the fourth-order

schemes.

In our WENO schemes, the linear weights q{Tj}j s depend on the local geometry of the mesh and can

be negative. If min(Ts,... ,%) < 0, we adopt the splitting technique of treating negative weights in WENO

schemes developed by Shi, Hu and Shu [15]: first we split the linear weights into two groups:

1 __

%+=  (Tj + 317JI), 7j = _+ - Tj, j = l,... ,q (2.16)

then we scale them by

q

a±= _-_?; 7j± = _?/_r ±, j= 1,-.. ,q. (2.17)
l 1

Now we compute the nonlinear weights (2.14) for the positive and negative groups ZjL separately, denoted

by _f, based on the same smoothness indicator/3j. Then we compute the WENO approximations (¢x)_

separately by (2.15), using cojL, and form the final WENO approximation by

(¢x)i = _+(¢,)+ - G- (¢x)i-. (2.18)

The key idea of this decomposition is to make sure that every stencil has a significant representation in

both the positive and the negative weight groups. Within each group, the WENO idea of redistributing the

weights subject to a fixed sum according to the smoothness of the approximation is still followed as before.

See [15] for more details.

Again, we remark that the smoothness indicator (2.13) is a quadratic function of function values on

nodes of the small stencil, so in a practical implementation, to compute the smoothness indicator/3j for the

j-th small stencil by equation (2.13), we do not need to use the interpolation polynomial itself, instead we
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use a series of constants {art, r = 1,..., t; t = 1,.-. , m}, which can be precomputed and they depend on

the mesh only, such that

/_j = Ot (_-_ a,,tO_,), (2.19)
t 1 r 1

where rrt is the total number of nodes in the j-th small stencil. These constants for all smoothness indicators

should be precomputed and stored once the mesh is generated.

2.3.2. Algorithm flowchart. We summarize the algorithm for the third-order and the fourth-order

WENO schemes as follows:

Procedure 2.5: The third- and fourth-order WENO schemes.

1. Generate a triangular mesh.

2. Compute and store all constants which only depend on the mesh and the accuracy order of the

scheme. These constants include the node index numbers of each small stencil, the coefficients in

the linear combinations of function values on nodes of small stencil to approximate the derivative

values and the linear weights, following the Procedure 2.2 for the third-order case and the Procedure

2.4 for the fourth-order case, and the constants for computing smoothness indicators in equation

(2.19).

3. Using the prestored constants, for each angular sector of every node i, compute the low-order ap-

proximations for V¢ and nonlinear weights, then compute the third or fourth-order WENO approx-

imations (2.15) or (2.18). Form the scheme (2.3). Use high-order TVD Runge-Kutta time stepping

[16] to evolve in time.

3. Nmnerical examples. In this section, we apply the WENO schemes developed in the previous

section to a set of one and two dimensional problems. The CFL number is taken as 0.5 in all the cases,

except for the accuracy test where it is taken to be smaller if necessary to guarantee that spatial errors

dominate. For the temporal discretization, we use the third-order TVD Runge-Kutta scheme of Shu and

Osher in [161.

We have not described the details of the one dimensional algorithm in the previous section. The algorithm

in 1D is just the same 2D algorithm with only two "angular sectors". The WENO interpolation follows along

the lines of [8] and [3]. In all the one-dimensional numerical examples, we use non-uniform meshes. These

non-uniform meshes are obtained by randomly shifting the cell boundaries in a uniform mesh in the range

[-0.1h, 0.1h] where h is the uniform mesh size. When we perform the accuracy test, the refinement of the

meshes is achieved by cutting each cell into two smaller equal sized ones.

Example 3.1. One-dimension linear equation:

¢t + ¢x = O, 0 < z < 27c,
(3.1)

_b(x, 0) = sin(x)

with periodic boundary conditions. We remark that even though this equation is also a conservation law,

the method used here is different from the WENO schemes for conservation laws in [8].

We use third, fifth and seventh order linear and WENO schemes to compute the problem to t = 2.0.

The errors and the numerical orders of accuracy are listed in Table 3.1. We can see that the correct orders of
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TABLE3.1
Accuracy for 1D linear equation, Linear and WEN(? Schemes, t--2

Linear 3rd order

N L _ error order

10 4.38E-02

20 5.85E-03 2.91

40 7.44E-04 2.97

80 9.41E-05 2.98

160 1.18E-05 2.99

5th order

L _ error order

4.94E-03

1.68E-04 4.88

5.56E-06 4.92

1.79E-07 4.95

5.67E-09 4.98

7th order

L _ error order

1.23E-03

1.06E-05 6.86

8.63E-08 6.94

6.91E-10 6.96

5.46E-12 6.98

WENO 3rd order

N L °_ error order

10 1.55E-01

20 4.64E-02 1.74

40 1.22E-02 1.93

80 1.66E-03 2.88

160 5.38E-05 4.95

5th order

L °_ error order

2.00E-02

8.64E-04 4.53

2.76E-05 4.97

8.75E-07 4.98

2.33E-08 5.23

7th order

L _ error order

3.07E-03

3.45E-05 6.48

4.24E-07 6.35

4.04E-09 6.71

1.04E-11 8.61

accuracy are obtained by both the linear and WENO schemes. In all the accuracy tests, we only list results

for L _ errors. Those for L: or L 2 errors, which follow the stone patterns, are omitted to save space.

Example 3.2. One-dimensional linear equation:

{¢t+Ox =0, -l_<x< 1,
(3.2)

¢(x, 0) = g(x - 0.5)

with periodic boundary conditions. Where

2 cos(a_2 x2 ) - x/_, -1 _< x < -_;

: 1 <x<0;v_ 9 _ + 3 cos(2_rx), - 5 - (3.3)
g(_) = -(V + _ + )(x + 1) + _ - 3cos(2_x), 0 _<x < 5;1

1
28+4_+_:os(3_x) + 6_rx(x - 1), 5 < x < 1.

This example comes from [7]. We use third, fifth and seventh order WENO schemes with 101 non-

uniformly spaced points and show the results at t=2 and 8 in Figure 3.1. We can clearly observe better

resolution with increased order of accuracy.

Example 3.3. One-dimensional Burgers equation:

Or+ (¢_+L) =0, -l_<x<l, (3.4)

[ ¢(x, 0) = - cos(_)

with periodic boundary conditions.

The local Lax-Friedriehs flux (2.4) is used. At t = 0.5/7_ 2, the solution is still smooth. We list the errors

and the numerical orders of accuracy in Table 3.2, using linear and WENO schemes. W_ see that the correct
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FIG. 3.1. One-dimensional linear equation. Non-uniform mesh with 101 points. Solid line is the exact solution. Left: a

comparison of third order 'o' and fifth order 'A '; right: a comparison of fifth order 'A ' and seventh order 'D '. Top: results at

t 2; bottom: results at t 8.

orders of accuracy are obtained. At t = 3.5/_r 2, the solution has developed a discontinuous derivative. In

Figure 3.2, we show the sharp corner-like numerical solution with 41 points using third, fifth and seventh

order WENO schemes. From now on, the solid line is the exact solution, and the circles are numerical

solutions.

Example 3.4. One-dimensional equation with a non-convex flux:

bt - cos(_bx + 1) = 0, -1 _< x < 1,
(3_)

_(x, 0) = - cos(_x)

with periodic boundary conditions.

The local Lax-Friedrichs flux (2.4) is used. At t = 1.5/_r 2, the solution has developed a corner-like

discontinuity in the derivative. The numerical result with 41 points is shown in Figure 3.3.
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TABLE 3.2

Accuracy ]'or 1D Burqers equation, Linear and WENO Schemes, t -- 0.5/7r 2.

Linear 3rd order

N L _ error order

10 8.12E-03

20 1.46E-03 2.47

40 2.52E-04 2.54

80 3.83E-05 2.72

160 5.23E-06 2.87

320 6.82E-07 2.94

5th order

L _ error order

3.89E-03

4.29E-04 3.18

2.33E-05 4.20

8.94E-07 4.70

2.94E-08 4.93

9.39E-10 4.97

7th order

L _ error order

1.75E-03

1.14E-04 3.95

4.78E-06 4.57

8.54E-08 5.81

8.57E-10 6.64

7.33E-12 6.87

WENO 3rd order

N L °_ error order

10 5.29E-02

20 1.93E-02 1.45

40 4.76E-03 2.02

80 5.97E-04 3.00

160 3.03E-05 4.30

320 1.11E-06 4.77

5th order

L °_ error order

5.21E-03

3.78E-04 3.78

3.05E-05 3.63

1.26E-06 4.60

4.19E-08 4.91

9.18E-10 5.51

7th order

L °° error order

2.92E-03

3.02E-04 3.27

5.58E-06 5.76

5.68E-08 6.62

5.66E-10 6.65

6.28E-12 6.50

Example 3.5. The one-dimensional Riemann problem with a non-convex flux:

1 2 2
Ct + _(Ox - 1)(0_ - 4) = 0,

[¢(x, 0) = -21xl.

-1<x<1,
(3.6)

We remark that this is a demanding test case. Many schemes have poor resolutions or could even

converge to a non-viscosity solution for this case. The global Lax-Friedrichs flux (2.4) is used. Local Lax-

Friedrichs flux is less satisfactory for this case. NumericM results at t = 1 with 81 non-uniform grid points

are shown in Figure 3.4. Third, fifth and seventh order WENO schemes are used.

Example 3.6. Two dimensional linear equation:

¢t +¢x +¢y =0, -2 _<x < 2,-2 _<y < 2,

¢(x, v, 0) = sin(_(x + y)).
(3.7)

with periodic boundary conditions.

2 where h is theWe first use uniform triangular meshes, shown in Figure 3.5 for the coarsest case h = g

length of the right angled side, to test the accuracy for the third and fourth order linear schemes and WENO

schemes. We then use non-uniform meshes, shown in Figure 3.6 for the coarsest case N = 105 where N is

the total number of nodes in the mesh. The refinement of the non-uniform meshes is done in a uniform way,

namely by cutting each triangle into four smaller similar ones. The accuracy results are shown only for the

non-uniform meshes, to save space, in Table 3.3. The expected orders of accuracy are obtained.
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FIG. 3.2. One-dimensional Burgers equation, local Lax-Friedrichs flux, t 3.5/_r 2. Solid line: the exact solution; circles:

numerical solutions. Non-uniform mesh with 41 points. Top left: third order WENO scheme; top right: fifth order WENO

scheme; bottom: seventh order WENO scheme.

TABLE 3.3

Accuracy for 2D Linear equation, Non-uniform Meshes, Linear and WENO Schemes, t 2.

N

105

385

1473

5761

22785

Linear

L _ error

3.27E-01

5.59E-02

8.04E-03

1.07E-03

1.39E-04

3rd order 4th order

WENO

order

1.53

1.91

2.48

4.52

Linear WENO

L _ error order

6.94E-01

2.35E-01 1.56

4.72E-02 2.32

3.20E-03 3.88

4.43E-05 6.18

order L °° error

7.00E-01

2.55 2.42E-01

2.80 6.44E-02

2.91 1.16E-02

2.94 5.03E-04

L _ error order

1.10E-01

6.99E-03 3.98

4.20E-04 4.06

2.54E-05 4.05

1.49E-06 4.09
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FIG. 3.3. One dimension, non-convex, local Lax-Friedrichs flux, H(u) - cos(u + 1), t 1.5/_T2. Solid line: the exact

solution; circles: numerical solutions. Non-uni]brm mesh with 31 points. Top left: third order WENO scheme; top right: fifth

order WENO scheme; bottom: seventh order WENO scheme.

Example 3.7. Two dimensional Burgers equation:

2 2 2[_. , (0x+%+1) _n
_ _ -- - 7 .... ' -2 _<_ < _,-2 < _ < 2, (3.s)
L,(x,y,0) = - cos(_)

with periodic boundary conditions.

At t = 0.5/7r 2, the solution is still smooth. We use both the uniform meshes (Figure 3.5) and the non-

uniform meshes (Figure 3.6) to test the accuracy, but errors and orders of accuracy fox" the third and fourth

order linear and WENO schemes only fox" the non-uniform meshes are listed in Table 3.4, to save space.

We can see that the correct orders of accuracy are obtained. At t = 1.5/7r 2, the solution has developed

discontinuous derivatives. We use the third and fourth order linear and WENO schemes to compute, with

uniform mesh of h = _. The results are shown in Figures 3.7 and 3.8. We can see that fox" this example

which is not very demanding, the linear schemes which do not use WENO nonlinear weights can also obtain

non-oscillatory results. It seems that the nonlinear WENO strategy is needed only fox' the more demanding

cases such as those fox" some non-convex fluxes.
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FIG. 3.4. One-dimensional Riemann problem, global Lax-Friedrichs flux, H(u) 1 2_(u - 1)(u _ - 4), t 1. Solid line:

the exact solution; circles: numerical solutions. Non-uniform mesh with 81 points. Top left: third order WENO scheme; top

right: fifth order [/VENO scheme; bottom: seventh order WENO scheme.

TABLE 3.4

Accuracy for 2D Burgers equation, Non-uniJbrm Meshes, Linear and WENO Schemes, t 0.5/7r 2.

N

105

385

1473

5761

22785

3rd order 4th order

Linear WENO Linear

L °_ error

6.10E-02

1.68E-02

3.54E-03

5.63E-04

7.70E-05

order L °_ error

1.68E-01

1.86 5.14E-02

9.25 1.51E-02

2.65 2.76E-03

2.87 1.63E-04

order

1.71

1.77

2.45

4.08

L °_ error order

2.91E-02

6.10E-03 2.26

7.45E-04 3.03

5.66E-05 3.72

2.65E-06 4.42

WENO

L °_ error order

1.71E-01

5.61E-02 1.61

1.63E-02 1.78

1.88E-03 3.12

8.64E-05 4.45
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Example 3.8. Two-dimensional equation with a non-convex flux:

_-cos(_ +_ + _)= o, -2 _<_ < 2,-2 _<y < 2, (3.9)
¢(x,y,o) = - cos(_).

with periodic boundary conditions.

For this example we use a non-uniform mesh (Figure 3.6) with N = 1473 nodes. At t = 1.5/_r 2, the

solution develops a discontinuous derivative, and we show the results using the third and fourth order linear

and WENO schemes in Figures 3.9 and 3.10. Similar to the Burgers equation case, linear schemes which do

not use WENO nonlinear weights can produce non-oscillatory results as well.

Example 3.9. The two-dimensional methods are applied to the one-dimensional non-convex Riemann

problem in Example 3.5. This example is more demanding than the previous two examples, and we will see

that the linear scheme will not work. We solve the problem in Example 3.5 in the domain [-1, 1] x [-0.2, 0.2]

with the triangulation shown in Figure 3.11. The periodic boundary condition is applied in the y-direction.

We plot the solutions along the central cut line y = 0.

First we use the third-order linear scheme to compute this problem, and refine the mesh to test conver-

gence. The results are plotted in Figure 3.12, with h - s 1 1 \Ve can see that the solutions of the linear20 _ 40 _ 80 "

scheme with one mesh refinement does not converge to the correct viscosity solution.

Next we use the third-order and fourth-order WENO schemes. From Figure 3.13, we can see that

the solutions of WENO schemes converge to the correct viscosity solution when the mesh is refined. And

obviously, the fourth-order scheme has a better resolution than the third-order scheme.

At last we use the first-order monotone scheme with the monotone Lax-Friedrichs Hamiltonian (2.2) to

compute the problem. The results are shown in Figure 3.14. It converges to the correct viscosity solution,

2o



1.5

1

0.5

-1

>-Of

-/

-0.5 _.

-/

-1 _,%,,

-1.5
- ff

-2_S

__%,/_/_ A

:1 7 /
/

>_

_-_,

\/,V, ,_
-1

/

J_J

, \Z
0 1
X

7/

<>
_p

2

FIG. 3.6. Non-uni]'orm mesh for the coarsest case with N 105 nodes.

3rd-order Linear Scheme, h=1/10 3rd-order WENO Scheme, h=1/10

FIG. 3.7. Two-dimensional Burgers equation, t 1.5/_r 2. Uniform mesh with h _o" Left: third order linear scheme;

right: third order WENO scheme.

as expected. But comparing with the results of the third and fourth order WENO schemes, the first order

monotone scheme needs a much more refined mesh to achieve the same resolution.

Example 3.10. Two dimensional Riemann problem:

{,t + sin(¢_ + ¢_) : O, -1 < ._' < 1,-1 < y < 1,
(3.10)

O(x, y, 0) = _(lyl - Ixl).

For this example, we use the uniform triangular mesh with 40 x 40 x 2 elements. Third and fourth order

WENO schemes are used. We show the numerical results at t = 1 in Figure 3.15.
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4th-order Linear Scheme, h=1/10 4th-order WENO Scheme, h=1/10

FIG. 3.8. Two-dimensional Burgers equation, t 1.5/u 2. Uniform mesh with h 1. Left: fourth order linear scheme;

right: fourth order WENO scheme.

3rd-order Linear Scheme, 1473 nodes

1

oI
05

1

2 15 1

3rd-orderWENO Scheme, 1473 nodes

1

05 2

o 1

05
o -_

1

FIG. 3.9. Two dimensions, H(u, v) - cos(u + v + 1), t 1.5/7r 2. Nonuniform mesh with N 1473 nodes. Left: third

order linear scheme; right: third order WENO scheme.

Example 3.11. A problem from optimal control:

_ 1 (1 cosx) 0,
Ot + (sin y)¢x + (sin x + si.qn(6y))6y 5 sin2y - - =

(,(x,y,0) = 0.

-_<x<_,-_<y<_,

(3.11)

with periodic boundary conditions, see [13].

We use the uniform triangle mesh with 60 x 60 x 2 elements. This means each of the 60 x 60 rectangles

is cut in two triangles diagonally. Third and fourth order WENO schemes are used. The solution at t = 1

is shown in Figure 3.16, and the optimal control w = sign(¢y) is shown in Figure 3.17.
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4th-order Linear Scheme, 1473 nodes 4th-orderWENO Scheme, 1473 nodes
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FIG. 3.10. Two dimensions, H(u, v) -cos(u + v + 1), t 1.5/_ 2. Nonuniform mesh with N 1473 nodes. Left: fourth

order linear scheme; right: fourth order WENO scheme.

>-

FIa. 3.11. Mesh for Example 3.9 with h _o"

Example 3.12. 2D eikonal equation with a non-convex Hamiltonian, which arises in geometric optics [9]:

g_t + _/_b2 + _b_ + 1 = O, O_<x<l,O_<y<l, (3.12)

¢(,, v, 0) = 0.25(cos(2_x) - 1)(cos(_v) - 1) - 1.

We use the third-order and fourth order WENO schemes. W_ use both the uniform meshes and the non-

uniform mesh shown in Figure 3.18, and present the results in Figure 3.19 for the non-uniforrn mesh case at

t= 0.6.

Example 3.13. The level set equation in a domain with a hole:

¢_ + 8ign(_o)( + ¢_ - 1) = 0, 5 < _ + < 1, (3.13)

[¢(*,>0) = ¢0(x,y).

This problem comes from [17]. The solution ¢ to (3.13) has the same zero level set as ¢0, and the

steady state solution is the distance function to that zero level curve. In this example, the exact steady state

solution is the distance function to the inner boundary of the domain. We compute the time-dependent

problem to reach a steady state solution, using the exact solution for the boundary condition. The mesh is

shown in Figure 3.20, and the result using the fourth-order WENO scheme is shown in Figure 3.21.
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FIG. 3.12. Convergence study for Example 3.9, linear scheme, central line cut at y O. Solid line is the exact solution;

diamonds are for the coarsest mesh with h 2A6,circles are ]'of" the next refined mesh with h _-6, and reverse triangles are

for the most refined mesh with h _o"

Example 3.14. The problem of a propagating surface:

_t - (1-cK)il + 0_ + ¢_ = 0, 0_<x<l,0_<y<l, (3.14)

¢(_,y,0) = 1- }(cos2;x - 1)(cos2_y- 1),

where K is the mean curvature defined by

K = - ¢_(1 + ¢_) - 2¢_¢_¢_ + ¢_(1 + ¢_) (3.15)
(1 + ¢_ + ¢_)_

and c is a small constant. A periodic boundary condition is used.

This problem came from [12]. We use the fourth order WENO scheme, and the second derivative terms

are approximated by those of the interpolating polynomial using the stable big stencil of our fourth order

scheme discussed in section 2. For c = 0 (pure convection), whose solution will develop a discontinuous

derivative in the center of the domain, we use the non-uniform mesh shown in Figure 3.18, and for c = 0.1,

we use the uniform mesh with 50 x 50 x 2 elements since the solution is smooth. The results are shown in

Figure 3.22. Notice that the surfaces at t = 0 and t = 0.1 (for c = 0.1) are shifted downward in order to

show the detail of the solution at later time.

Example 3.15. A problem from computer vision:

¢t + Z(x,y)v/1 + ¢_+ ¢; - 1 = 0,¢(x,y, 0) = 0

-l<x<l,-l<y<l,
(3.16)
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FIG. 3.13. Convergence study for Example 3.9, WENO schemes, central line cut at y O. Solid line is the exact solution;

diamonds are for the coarsest mesh with h _, circles are for the next refined mesh with h 1 and reverse triangles are

for the most refined mesh with h 1o . Top: third order WENO schemes; bottom: fourth order WENO schemes.

where I is defined by

1
I(x,y) = (3.17)

,/1 + (1 -Ixl) 2 + (1-I_1) 2

with O = 0 as the boundary condition.

This problem comes from [14]. The steady state solution of this problem is the shape lighted by a source
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FIG. 3.14. Conve<qence study for Example 3.9, first order monotone scheme, central line cut at y O. Solid line is the
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and the dashed line is ]'or the most refined mesh with h - 1
640 "

3rd orderWENO, h=1/20 4th orderWENO, h=1/20

O5 _05
Y

FIG. 3.15. Two-dimensional Riemann problem, H(u,v) sin(u + v), t 1. Uniform triangle mesh with h _o" Left:

third order WENO scheme; right: fourth order WENO scheme.

located at infinity with vertical direction. The solution is not unique if there are points at which I(x, y) = 1.

Conditions must be prescribed at one of those points where I(x, y) = 1. The exact steady solution is

¢(x,y, oc) = (1 -Ixl)(1 -lyl) (3.18)

We use the uniform mesh with 50 x 50 x 2 elements and the third-order and fourth-order WENO schemes

to compute the steady state solution. The boundary conditions are imposed exactly from the above exact

steady solution. The results are shown in Figure 3.23.
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order WENO scheme.
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FIG. 3.17. Control problem, t 1,w sign(¢_).

right: fourth order WENO scheme.

27r Left: third order WENO scheme;Uniform triangle mesh with h co"

4. Concluding remarks. We have constructed third order and fourth order WENO schemes for

Hamilton-Jacobi equations based on 2D triangular meshes. Extensive numerical experiments have been

performed to find the most robust strategies in the choice and grouping of stencils for the WENO schemes.

These methods have high-order accuracy for smooth problems and high-resolution for singularity of deriva-

tives. No parameters have to be tuned in the algorithms. Numerical Examples are shown to illustrate the

capability of the method. These methods should be useful if geometry or adaptivity requires unstructured

meshes for the solution of Hamilton-Jacobi equations.
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